Expressing Bayesian Fusion as a Product of Distributions: Application to Randomized Hough Transform
نویسندگان
چکیده
Data fusion is a common issue of mobile robotics, computer assisted medical diagnosis or behavioral control of simulated character for instance. However data sources are often noisy, opinion for experts are not known with absolute precision, and motor commands do not act in the same exact manner on the environment. In these cases, classic logic fails to manage efficiently the fusion process. Confronting different knowledge in an uncertain environment can therefore be adequately formalized in the bayesian framework. Besides, bayesian fusion can be expensive in terms of memory usage and processing time. This paper precisely aims at expressing any bayesian fusion process as a product of probability distributions in order to reduce its complexity. We first study both direct and inverse fusion schemes. We show that contrary to direct models, inverse local models need a specific prior in order to allow the fusion to be computed as a product. We therefore propose to add a consistency variable to each local model and we show that these additional variables allow the use of a product of the local distributions in order to compute the global probability distribution over the fused variable. Finally, we take the example of the Randomized Hough Transform. We rewrite it in the bayesian framework, considering that it is a fusion process to extract lines from couples of dots in a picture. As expected, we can find back the expression of the Randomized Hough Transform from the literature with the appropriate assumptions.
منابع مشابه
Development Hough transform to detect straight lines using pre-processing filter
Image recognition is one of the most important field in image processing that in recent decades had much attention .Due to expansion of related fields with image processing and various application of this science in machine vision, military science, geography, aerospace and artificial intelligence and lots of other aspects, out stand the importance of this subject.One of the most important aspe...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملDevelopment Hough transform to detect straight lines using pre-processing filter
Image recognition is one of the most important field in image processing that in recent decades had much attention .Due to expansion of related fields with image processing and various application of this science in machine vision, military science, geography, aerospace and artificial intelligence and lots of other aspects, out stand the importance of this subject.One of the most important aspe...
متن کاملExpressing Bayesian fusion as a product of distributions: applications in robotics
Abstract— More and more fields of applied computer science involve fusion of multiple data sources, such as sensor readings or model decision. However incompleteness of the models prevent the programmer from having an absolute precision over their variables. Therefore bayesian framework can be adequate for such a process as it allows handling of uncertainty. We will be interested in the ability...
متن کاملComparison of Different Combination Strategies for Face Localization
We present a comparison between different image fusion methods dedicated to the localization of faces in color images. The data to combine results from a connexionist model (auto-associative network), an ellipse model based on Generalized Hough Transform, and a skin color model. The combination methods compared have clearly different approaches. They include the Bayesian classifier with paramet...
متن کامل